
Fields and methods in Java

Advanced techniques for working with fields and methods in your Java
programs

Field constants
You can create a read-only field by including keyword final in its declaration. The result is
known as a constant. For example,

final int DAYS_IN_MONTH = 30;

and

final static double NORMAL_BODY_TEMP = 98.6;

declare constants DAYS_IN_MONTH and NORMAL_BODY_TEMP. By convention, a
constant's name is expressed in capital letters.

Instance and class constants are different. Each object can see a different value for an
instance constant, but a class constant presents the same value to all objects. See the
difference in Listing 1.

Listing 1. Instance vs class constants

class Month

{

 final static int NUM_MONTHS = 12;

 final int DAYS_IN_MONTH;

 Month(int days_in_month)

 {

 DAYS_IN_MONTH = days_in_month;

 }

 public static void main(String[] args)

 {

 System.out.println(Month.NUM_MONTHS);

 Month feb = new Month(28);

 System.out.println(feb.DAYS_IN_MONTH);

 Month jul = new Month(31);

 System.out.println(jul.DAYS_IN_MONTH);

 }

}

Month.java first declares a NUM_MONTHS class constant that's initialized to 12. All objects
created from the Month class will see the same value for this constant. A class constant
must be assigned a value when the constant is declared and cannot be subsequently
modified.

Next, the class declares a DAYS_IN_MONTH instance constant. This constant is not
initialized as part of its declaration, although it could be. Instead, initialization is deferred to
the constructor, which is the only other place where it could be initialized. Such a constant is
known as a blank final. An instance constant cannot be subsequently modified.

Compile the code as follows:

javac Month.java

Then run the resulting application:

java Month

You should observe the following output:

12

28
31

Field-access rules
Fields are accessed in different ways depending on the kind of field (instance or class) and
context (from within a class or from code external to the class). These four rules will help
you avoid mistakes when accessing different kinds of fields in different contexts:

1. Specify an instance field name without a prefix when accessing this field from another instance field,

constructor, or instance method in the same class. Example: author.
2. Specify a class field name without a prefix when accessing this field from another instance or class

field, constructor, or instance or class method in the same class. Example: counter.
3. Specify an object reference followed by the member access operator followed by the instance field

name when accessing this field (provided that it is accessible) from outside of its class or from a class

method in the same class. Example: book.title.
4. Specify a class name followed by the member access operator followed by the class field name when

accessing this field (provided that it is accessible) from outside of its class. Example: Book.counter.

In some cases shadowing (wherein a parameter or local variable hides or masks an instance
field) is an issue. You can resolve it by prepending this. to an instance field name or the class
name and member-access operator to a class field name. For example, if you had to assign a
parameter value to a same-named instance field, you would also prepend this. to the field
name.

Chaining instance method calls
Two or more instance method calls can be chained together via the member access
operator, which results in more compact code. To accomplish instance method call chaining,
you need to re-architect your instance methods. The key is to design your methods to return
a reference to the current object, which is indicated via the this keyword.

In Listing 2 you can see that I've changed the return types of the methods being chained
together to the class type. I've also used return this; to ensure that each method will always
return the current object reference.

Listing 2. Setting up an instance method call chain

public class TG

{

 public static void main(String[] args)

 {

 Turtle turtle = new Turtle().penDown();

 turtle.move(10).turnLeft().move(10).turnRight().move(10).penUp();

 }

}

class Turtle

{

 Turtle penUp()

 {

 System.out.println("pen up");

 return this;

 }

 Turtle penDown()

 {

 System.out.println("pen down");

 return this;

 }

 Turtle turnLeft()

 {

 System.out.println("turn left");

 return this;

 }

 Turtle turnRight()

 {

 System.out.println("turn right");

 return this;

 }

 Turtle move(int numUnits)

 {

 System.out.println("moving " + numUnits + " units");

 return this;

 }
}

The source code in Listing 2 consists of a TG main class and a Turtle helper class. The main
class instantiates Turtle and chains various instance method calls to this reference.

You will notice that Turtle doesn't include a constructor. I chose to not declare a constructor
because there was nothing to initialize. When no constructors are declared, the compiler
generates a default no-argument constructor that does nothing. The compiler doesn't
generate this constructor when at least one constructor is declared.

Pass-by-value arguments
A method or constructor call includes zero or more arguments that are passed to the
method or constructor. Java passes arguments to methods and constructors via pass-by-
value, which passes the value of a variable or the value of another expression to that
element. A pass-by-value argument is demonstrated below:

Library library = new Library();

Book book = new Book("Moby Dick", 1851);
library.add(book);

With pass-by-value, a called method or constructor cannot change its argument(s). For
example, there is no way for Library's void add(Book book) method to change the argument
that was passed to the book parameter. So you couldn't do this:

class Library

{

 void add(Book book)

 {

 book = new Book("...", 2015);

 // ...

 }
}

and expect the value in the caller's book local variable (of the previous Book book = new
Book("Moby Dick", 1851); expression) to change. If you did successfully change the

argument, the JVM would probably crash the first time that it attempted to assign a new
value to null in a library.add(null); method call.

Recursion and the method-call stack
A method normally executes statements that may include calls to other methods. However,
it's often useful to have a method call itself. This programming technique is known
as recursion.

For example, suppose you needed to write a method to return a factorial, which is the
product of all the positive integers up to and including a specific integer. Knowing that ! is
the mathematical symbol for factorial, you can guess that 4! equals 4x3x2x1, or 24. A first
approach to writing this method could consist of the code presented below:

static int factorial(int n)

{

 int product = 1;

 for (int i = 2; i <= n; i++)

 product *= i;

 return product;
}

Although this code accomplishes its task via iteration, factorial() could be written more
compactly by adopting a recursive style:

static int factorial(int n)

{

 if (n == 1)

 return 1; // base problem

 else

 return n * factorial(n - 1);
}

The recursive approach expresses a problem in simpler terms of itself. According to this
example, the simplest problem, which is also known as the base problem, is 1! (1). When an
argument greater than 1 is passed to factorial(), this method divides the problem into a
simpler problem by calling itself with the next smaller argument value. Eventually, the base
problem will be reached. For example, calling factorial(4) results in the following stack of
expressions:

4 * factorial(3)

3 * factorial(2)
2 * factorial(1)

This last expression is at the top of the stack. When factorial(1) returns 1, these expressions
are evaluated as the stack begins to unwind, in the following order:

1. 2 * factorial(1) now becomes 2*1 (2)

2. 3 * factorial(2) now becomes 3*2 (6)

3. 4 * factorial(3) now becomes 4*6 (24)

Recursion provides an elegant way to express many problems. Additional examples include
searching tree-based data structures for specific values and, in a hierarchical file system,
finding and outputting the names of all files that contain specific text.

Unlimited recursion and stack space exhaustion

Recursion consumes stack space, so make sure that your recursion eventually ends in a base
problem; otherwise, you will run out of stack space and your application will be forced to
terminate.

The method-call stack

Method calls require a method-call stack to keep track of the statements to which execution
must return. Furthermore, the stack keeps track of parameters and local variables on a per-
method-call basis. Think of the method-call stack as a pile of clean trays in a cafeteria--you
pop a clean tray from the top of the pile and the dishwasher will push the next clean tray
onto the top of the pile.

When a method is called, the JVM pushes the called method onto the method-call stack,
along with its arguments and the address of the first statement to execute on that method.
The JVM also allocates stack space for the method's parameters and/or local variables.
When the method returns, the JVM removes the parameter/local variable space, pops the
address and arguments off of the stack, and transfers execution to the statement at the
given address.

Rules for calling methods
Methods are called in different ways depending on the kind of method (instance or class)
and context (from within a class or from code external to the class). Here are four rules for
calling different kinds of methods in various contexts:

1. Specify an instance method name without a prefix when calling the method from another instance

method or constructor in the same class. Example: add(book).
2. Specify a class method name without a prefix when calling it from another instance or class method,

or from a constructor in the same class. Example: search(values, value).
3. Specify an object reference followed by the member access operator followed by the instance

method name when calling a method from outside of its class or from a class method in the same

class (provided that it is accessible). Example: book.getTitle().
4. Specify a class name followed by the member access operator followed by the class method name

when calling a method from outside of its class (provided that it is accessible).

Example: Book.showCount().

Don't forget to make sure that the number of arguments passed to a method--along with
the order in which they are passed and the types of these arguments--agree with their
parameter counterparts in the method being called. Otherwise, the compiler will report an
error.

Utility classes
A utility class consists of static fields and/or static methods. The standard class library
contains examples of utility classes, including Math. Listing 3 presents another example of a
utility class.

Listing 3. A utility class in Java

class Utilities

{

 // Prevent Utilities from being instantiated by declaring a

 // private no-argument constructor.

 private Utilities()

 {

 }

 static double average(double[] values)

 {

 double sum = 0.0;

 for (int i = 0; i < values.length; i++)

 sum += values[i];

 return sum / values.length;

 }

 static void copy() throws java.io.IOException // I'll discuss throws and

 { // exceptions in a future

 while (true) // article.

 {

 int _byte = System.in.read();

 if (_byte == -1)

 return;

 System.out.print((char) _byte);

 }

 }

 static int factorial(int n)

 {

 if (n == 1)

 return 1; // base problem

 else

 return n * factorial(n - 1);

 }

 static int search(int[] values, int srchValue)

 {

 for (int i = 0; i < values.length; i++)

 if (values[i] == srchValue)

 return i; // return index of found value

 return -1; // -1 is an invalid index, so it's useful for indicating

 // "value not found".

 }
}

To prevent Utilities from being instantiated, I've declared a private, no-argument (and
empty) constructor.

Listing 4 presents a small class that demonstrates a number of Utilities methods.

Listing 4. Demonstrating Utilities's methods

class UtilDemo

{

 public static void main(String[] args)

 {

 double[] values = { 10.0, 20.0, 30.0, 40.0 };

 System.out.println(Utilities.average(values));

 System.out.println(Utilities.factorial(5));

 int[] numbers = { 25, 49, 33, 89 };

 System.out.println(Utilities.search(numbers, 33));

 System.out.println(Utilities.search(numbers, 34));

 }
}

